The Bus Probe

Computer Products
4901 West Rosecrans, Hawthorne, California 90250 213-973-7707

THIS PRODUCT IS WARRANTED TO BE FREE FROM DEFECTS IN MATERIALS AND WORKMANSEIP FOR A PERIOD OF 90 (NINETY) DAYS FROM THE DATE OF PURCHASE. SHOULD IT FAIL TO PERFORM IN ACCORDANCE WITE ITS SPECIFICATIONS, PLEASE CALL OR WRITE JADE'S CUSTOMER SERVICE DEPARTMENT FOR A RETURN AUTHORIZATION NUMBER BEFORE RETURNING IT FOR SERVICE, DEFECTIVE UNITS RETURNED TO JADE WITEIN TGE 90 DAY WARRANTY PERIOD WILL BE REPAIRED OR REPLACED FREE OF CHARGE.

THIS WARRANTY IS LIMITED TO REPLACEMENT OF DEFECTIVE PARTS AND IS INVALID IF THE PRODUCT HAS BEEN MODIFIED OR MISUSED. IN NO EVENT WILL JADE COMPUTER PRODUCTS INC. BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THIS PRODUCT. (SOME STATES DO NOT ALLOW TEE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO T日E ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU).

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, REPRESENTATIONS, OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY REGARDING MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE NOT SPECIFIED IN THIS WARRANTY.

JADE COMPUTER PRODUCTS

PRESENTS

THE BOS PROBE

GARDWARE MANUAL

TSX-200M

> Copyright (C) 1981
> Jade Computer Products 4901 West Rosecrans Hawthorne, California 90250

All Rights Reserved

TABLE OF	IS TEE BUS PROBE	
SECTION	DESCRIPTIION	PAGE
1	INTRODUCTION	1
1.1	SCOPE	1
1.2	PURPOSE	1
1.3	DESCRIPTION	1
2	FUNCTIONAL DESCRIPTION	3
2.1	GENERAL	3
2.2	ADDRESS LINES	3
2.3	DATA LINES	3
2.4	TMA AND DISABLE	3
2.5	Status	4
2.6	UTILITY	4
2.7	INTERRUPTS	4
2.8	POWER	4
2.9	tICRS	4
2.10	CLEARS	4
2.11	PROCESSOR	4
2.12	WAIT	5
2.13	PATCH	5
2.14	SPARES	5
2.15	SWITCH Sl	5
2.16	JUMPER BLOCRS	6
2.17	MODIFICATIONS	6
3	CONSTRUCTION	7
3.1	INTRODUCTION	7
3.2	INSPECTION	7
3.3	PREPARATION	7
3.4	ASSEMBLY	7
4	TESTING THE BUS PROBE	11
4.1	INTRODUCTION	11
4.2	INITIAL TEST	11
4.3	GROUND TEST	12
4.4	CYCLE DISPLAY	14
4.5	SCAN DISPLAY	15
	APPENDICES	
A	IEEE 696 S100 PINOUT	
B	PARTS LIST	
C	FOIL DIAGRAMS	
D	SCAEMATICS	
E	CUSTOMER RESPONSE	

INTRODUCTION

SECTION I

1.1 SCOPE

This manual contains a complete hardware description of Jade Computer Product's BUS PROBE. It provides the end user with the construction and testing procedures. Also provided are the schematic diagran, traces/silkscreen artwork, and functional description of the circuitry.

1.2 PURPOSE

The BUS PROBE provides an inexpensive tool for troubleshooting of CPU boards, Sloo Temporary Bus Masters (such as disk controllers), as well as entire systems. Master boards generate most of the IEEE S100 bus signals. The BOS PROBE allows the user to quickly monitor these IEEE 696 Sl 00 signals. Since very few front panel boards provide for display of the entire sloo bus, and most systems don't have front panels, the BUS PROBE provides a cost effective and easily installed means for troubleshooting.

1.3 DESCRIPTION

The BUS PROBE. is a LED display board designed to be inserted into the Sl00 bus. This board is mostly passive to the Sl00 bus. It monitors each of the 5100 signal lines (with minimal loading) and displays the signal logic level on the corresponding LED. In most cases the LED is ON when the Sloo signal is ASSERTED. FOE address and data lines this is a logic 1 or high TrL level. Note signals like INT* are ASSERTED as a logic o or low TTL level. The BUS PROBE is capable of displaying all IEEE 696 Si00 signals. This board will also function in most Sloo computer systems designed previous to the IEEE specification.

The BUS PROBE can be divided into two sections. The lower half of the board contains the Sloo bus interface and display driver circuitry. The lower half of this board is about the same size as a standard S100 board. The upper half of this board contains the display area. The display area has been double silkscreened to enhance the LED display. This section of the board extends above the top of other boards. This makes the display area visible when plugged directly into the 5100 bus.

Mhis product allows selective viewing of certain bus cycles. By switch selection the user can display any one or combination of the following bus cycles: Ml instruction fetch, memory read, memory write, port input, and port output.

FUNCTIONAL DESCRIPTION

SECTION 2

2.1 GENERAL

The BUS PROBE is a self-contained display-only panel board for the Sl00 bus. The 96 LED display is divided into 12 different sections of 8 LEDs each. All LEDs are driven by 74 LS38 bus drivers and provide approximately 25 ma of display current for each LED. This provides for a bright display.

The spare inputs of the LS38s for each cluster of 8 LEDS have been connected together to provide a cluster enable line. These cluster enable lines are accessible at jumper block Xl. The cluster enable lines are used to provide viewing of selected bus cycles.

2.2 ADDRESS LINES

The full extended address bus can be viewed from this board. Address LEDs 23 thru 0 match the IEEE 696 S100 address lines A23 thru AO. Each LED is on when the corresponding address line is in the high state. Three cluster enable lines control this display.

XADRENB	A23-A16
HADRENB	A15-A08
LADRENB	A07-A00

2.3 DATA LINES

Both the byte wide DATA IN and DATA OUT bus can be viewed from this board. Each LED is on when the corresponding data line is in the high state. The physical layout is such that during word wide data transfers, the entire 16 bits can be viewed in proper order. One cluster enable line controls each half of the display.

$$
\begin{array}{ll}
\text { DIENB } & \text { DI7-DIO } \\
\text { DOENB } & \text { DO } 7-\text { DOO }
\end{array}
$$

2.4 TMA AND DISABLE

Temporary Master Access lines can be viewed from this board. Each LED is on when the corresponding bus line is in the low state. DMAENB controls this cluster.

2.5 STATUS

All eight IEEE status lines can be viewed from this board. Each LED is on when the corresponding bus line is in the asserted state, whether that is high or low. STATENB. controls this cluster.

2.6 UTILITY

Eight various IEEE SlOO bus signals have been grouped together in this cluster: INT*, NMI*, PHAN*, HOLD*, PWF*, ERR*, SIXTN*, and MWRT. Each LED is on when the corresponding bus line is asserted (MWRT is the only line asserted high).

2.7 INTERRUPTS

All eight vector interrupt request lines VI7* thru VIO* can be viewed from this board as INTERRUPTS 7 thru 0 . Each LED is on when the corresponding bus line is in the low state (asserted). VIENB controls this cluster.

2.8 POWER

The three bus voltages, +8 volts, +16 volts, and -16 volts, each drive a corresponding LED directly thru a series limiting resistor. This provides a means to verify bus voltages.

2.9 TICKS

Two LEDs are provided each with a one-shot to monitor bus clocks PHI and CLK. A failure in either clock will show with the corresponding LED off. These two are the only signals that are not directly viewed.

2.10 CLEARS

RESET*, SLAVE CLEAR*, and POC* can be viewed from this board. Each LED is on when the corresponding bus line is asserted low.

2.11 PROCESSOR

The five processor signals pSYNC, pSTVAL*, pDBIN, pWR*, and pHLDA can be viewed on this board. Each LED is on when the corresponding bus line is asserted (either high or low).

2.12 WAIT

Both RDY and XRDY can be viewed from this board. These LEDs are on when the corresponding bus lines are in the low state. NOTE: these are the only LEDs which respond to the unasserted state.

2.13 PATCA

Eight LEDs with corresponding LS38 drivers are on the BUS PROBE as spare indicators. These have been provided for special user needs. The Ls38 driver inputs are connected to jumper block x4.

2.14 SPARES

Five spare IC socket locations have been provided on the $B O S$ PROBE for special user needs. These provide Vcc and Gnd connections so be AWARE!

Two spare switch locations have been provided on the top edge of the BUS PROBE. These mountings are for COTLER-BAMMER subminiature printed circuit board switches. Foils on the solder side of the PCB allow connections to be made below the display area.

LEFT	CENTER	RIGET	PART NMBR
ON	NONE	ON	SF6TCX392
ON	NONE	TEMP	SF6TGX392
TEMP	NONE	ON	SF6TEX392
ON	OFF	TEMP	SF6TFX392
TEMP	OFF	ON	SF6TAX392
ON	OFF	ON	SF6TBX392
TEMP	OFF	TEMP	SF6TEX392
NONE $=$ NO POSITION, TEMP $=$ MOMENTARY			

2.15 SWITCE SI

Sl is used to select which type bus cycles are viewed. It also controls the onboard pulse generator. One position of this switch is left as a spare.

POSITION	POS	FUNCIIONAL DESCRIPTION OF POSITION
'1'	OFF	ALLOWS MI CYCLES TO BE DISPLAYED
'M'	OFF	ALLOWS MEMORY READ CYCLES TO DISPLAY
'W'	OFF	ALLOWS MEMORY WRITE CYCLES TO DISPLAY
'I'	OFF	ALLOWS PORT INPUT CYCLES TO DISPLAY
'0'	OFF	ALLOWS PORT OUTPUT CYCLES TO DISPLAY
'A'	OFF	ALLOWS ALL BUS ACTIVITY TO DISPLAY
'p'	ON	ENABLES ONBOARD PULSE GENERATOR
'S'		SPARE SWITCH POSITION

The display is enabled if any condition determined by switches 1 , M, W, I, O, and A is met.

2.16 JUMPER BLOCRS

The following jumper blocks have been provided for the advanced user to make special modifications to the board.

XI is where all cluster enable lines are connected.
X2 provides access to a spare 74 LS1 23 dual one-shot.
X3 connects to all the RFO (reserved future use) and NDEF (not defined) lines as declared in IEEE 696 Sl 00 bus specifications.

X4 connects to the LS38 inputs that drive the PATCE LEDs. This jumper block has been wired in the foil to kept these LEDs off until XS is modified. The user will have to cut some foil links to use the PATCA display.
$X 5$ is a distribution area for the onboard pulse generator. One tap will drive the S100 RESET line (75). Row 1 provides two taps to make connections of your choice. A shunt plug at one of rows 2,3 or 4 will select which tap to drive.t

2.17 MODIFICATIONS

The warranty for this board applies to boards assembled as described in SECTION 3. Even though this board provides for easy modification, Jade Computer Products can not servica modified boards. There would be too many individual variations; besides, our technical facility is set up to test only the standard configurations. As this boardis intended to be used by technical individuals, this limited service policy should provide no difficulty.

TO MARE USE OF WARRANTY, TEST ASSEMBLED KIT OR A\&T PRODUCT BEFORE MARING ANY MODIFICATION.

BOARD ASSEMBLY
SECTION 3

3.1 INTRODUCIION

If you have purchased THE BOS PROBE as a kit, we strongly urge you to read this section before attempting to assemble the board. This board is intended for those people who have had some prior experience with digital electronics and circuit board assembly. If you do not, it is recommended that you find an experienced person to help you with the assembly of the board.

3.2 INSPECTION

Check the parts received against the PARTS LIST (Appendix B). Take special care to correctly identify similar looking parts; resistors, capacitors, and diodes. If any part is missing from your kit, please call Jade's Customer Service Department or your local retail store and report the shortage immediately.

3.3 PREPARATION

Make sure you have the tools ready that are needed for kit assembly. For this board the following items are required:

Soldering iron (25 watts)
Damp sponge (keep solder tip clean)
Rosin core solder (preferably 63/37)
Diagonal cutters
Screwdriver Exacto knife Lead former (optional) Needle-nose pliers Eye protection

3.4 ASSEMBLY

USE EYE PROTECTION WEILE SOLDERING OR CJTHING

[] Install 16 pin IC sockets at location $3 \mathrm{~A}, 3 \mathrm{C}$, and 4 J . Solder only pins 1 and 9.
[] Install 14 pin IC sockets at location RPl thru RP8. Solder only pins 1 and 8.
[] Install 14 pin IC sockets at locations lA thru 1 P. Solder only pins 1 and 8.
[] Install 14 pin IC sockets at locations 2A thru $2 P$. Solder only pins 1 and 8.
[] Install 14 pin IC sockets at location 3B. Install 14 pin IC sockets at locations 3D thru 3H. Install 14 pin IC sockets at locations 3L thru $3 P$. Solder only pins 1 and 8.
[] Install 14 pin IC sockets at locations $4 C, 4 D, 4 B, 4 K$, and $4 M$. Solder only pins 1 and 8.
[] Carefully inspect the printed circuit board (PCB) to determine that all IC sockets are down flat against the PCB. If you find any that are not flat against the PCB, heat the solder joints of the IC pins while pressing the IC socket down.
[] Now that all IC sockets are flat against the PCB, turn the PCB solder side up. Inspect each IC area to make sure all IC socket pins are sticking thru the PCB holes. IC sockets are more difficult to remove after the entire IC has been soldered in. Remove any socket not installed correctly, straighten the pin, and re-insert.
[] Solder all IC socket pins.

NUMBERS IN PARENTEESIS DENOTE PHYSICAL LOCATION ON PCB
[] Install the 5.1R 1/4 W (Green/Brown/Red) resistors at the following locations:
[] R1 (3A) [] R1] (3A)
[] Install $33 \mathrm{~K} 1 / 4 \mathrm{~W}$ (Orange/Orange/Orange) resistor at R2 (3A).
[] Install the 6.8 K 1/4 W (Blue/Gray/Red) resistors at the following locations:
$\left[\begin{array}{llll}{[1]} & \text { (3C) [] R10 (3C) }\end{array}\right.$
[] Install the 910 ohm $1 / 2 \mathrm{~W}$ (White/Brown/Brown) resistors at R8 and R9 (1A). Allow $1 / 8$ inch between bottom of resistors and the PCB.
[] Using a cut resistor lead (you should have a few now) prepare a 0.3^{n} diameter loop and install both ends thru the plate-thru holes silkscreened "GROOND" between RP2 and RP4. This provides for making an easy ground connection to the board.
[] Install the looR trimmers at $R 3$ and $R 4$ (3A).
[] Install the 3.3R 8 pin SIP resistor pack at RPg (1P). Observe pin \#l $^{\text {for }}$ proper installation.
[] Install the $1 N 914 B$ signal diode at CRI (3A). Observe banded end of diode matches silk screen.
[] please read hed instacraiton carepoliy
[] Inspect the bottom surface of each LED for molding defects. Remove any surface iryegularities with an EXACTO knife to ensure that the LEDs will seat flat on the $P C B$ surface. Be sure to check that the leads have no meniscus from the LED encapsulation.
[] Install 24 LEDs along one row of the display area. Be sure that the longer lead of each LED is installed in the hole toward the SIOO connector side of the PCB. Only solder one lead of each LED.
[] TARE TEE TIME TO CAREFULLY POSITION EACA LED FOR A UNIFORM ROW OF WELLALIGNED LEDs. This is very easy to do with only one lead soldered in. NOW INSPECT EACH LED to make sure the flat part of the LED rim is facing toward the s. 100 connector.
[] Solder the second lead of each LED. Cut the leads off the LEDs.
[] Repeat the last three steps for each individual row of LEDs. BE AWARE OF CAPACITOR SUBSTITUTIONS. Check PARTS LIST for acceptable range of part values.
[] Install 4.7 uf 10 volt tantalum capacitors at the following locations. Be careful of plate-thru-holes near C9. OBSERVE CAPACITOR POIAARITY!
$[1 \mathrm{Cl}$ (3A)
[] C9
(4B)
[] Clo (4M)
[] Install 4.7 uf 25 volt tantalum capacitor at Cll (4B). OBSERVE POLARITY.
[] Install 3.3 uf 10 volt tantalum cpacitor at C4 (3B). The positive lead is toward trimmer R4.
[] Install 0.33 uf 10 volt tantalum capacitor at C2 (3A). The positive lead is toward trimmer R3.
[] Install 0.1 uf monolithic capacitor at C3 (3A).
[] Install 33 pf mica capacitors at C5 and C6 (3C).
[] Prepare two each four-pin strips from the 36 pin header strip. Install these at $X 5$. Insert four shunt plugs across the two strips to maintain alignment while soldering.
[] Prepare leads of 7805 regulator for mounting at VR3. Install 7805 on heat sink using $\# 4$ hardware set. Insert screw from solder side of PCB. Solder mounted 7805.
[] Prepare leads of two 7805 regulators for mounting at VRI and VR2. Install $7805 s$ on heat sink using two sets \#4 hardware. Insert screws from solder side of PCB. Solder mounted 7805 s .
[] OPTIONAL STEP \#1. Install THE 2×10 block header-pins at XI thru X4 (3J-3K). USE A MINIMUM OF SOLDER. This will prevent INTERCONNECTIONS fron being covered with solder. You may desire to cut these during board modification.

Consistent with the IEEE-696 SI 00 Bus standard, this board connects S100 bus pins $\$ 20,53$, and 70 to ground (0 volts). If desired, for use with non standard bus configurations where these lines serve a specific function, these connections to ground may be cut with header pins and jumpers installed for maximum adaptability.
[] OPTIONAL STEP \#2. On solder side of board cut trace between the two pads immediately above and connected to Sloo pin \#53. Prepare a 2×1 header strip and install on component side of PCB in silk screened area "53".

Locate on the component side of board immediately above pin $\$ 20$ the "20/70 GND" silkscreen block. Cut both vertical traces. Install 2 each $2 x l$ header strips, using 2 shunt plugs to hold alignment between the 2 strips.
[] Clean flux from board. Be sure to read and follow manufacturers instructions when using flux cleaners.
[] Install switch at $S 1$ (lp). Be sure each switch is OPEN before soldering.
[] Install the DIP resistor networks at locations RP1 thru RP8. Observe pin \#l alignment. The silkscreen outline indicates the pin F_{1} side with an indent.
[] Install ICs at all 43 locations. Match the IC number with the silkscreen which identifies each socket location.

This completes the assembly phase of THE BUS PROBE.

4.1 INTRODUCTION

The BOS PROBE can be tested with a minimum of equipment. This section presents a detailed check-out of the BUS PROBE using a voltmeter, a grounding wire, the BUS PROBE itself, and an Sloo mainframe. Due to the nature of this board, most test results are taken from the BOS PROBE display area. More advanced tests are described which make use of your system's monitor or operating system.

4.2 INITIAL TESTS

[] Turn your mainframe power switch off. Remove all cards from the $\mathrm{S}-100$ mainframe. At this time you should check the motherboard to see that it is free from any lost parts that might have fallen upon it. Insert the Bus Probe into an S100 card slot. In front of the BUS PROBE insert an S-100 extender card. All positions of $S l$ should be off.
[] Turn mainframe power on. Measure the output voltage of the three regulators. Each should be between 4.8 and 5.2 volts. A ground point is located between RP2 and RP4.

```
[ ] Test VRl at IC lA pin #14.
[ ] Test VR2 at RP1 pin $14.
[ ] Test VR3 at RP2 pin #14.
```

[] Now inspect the BUS PROBE display area. The following is a list of those LEDs which should be on.

[]	ADDRESS:	All address
1	DATA IN:	All DATA IN 7 thru 0
]	DATA OUT:	All Data out 7 thru 0
1	STATUS:	SMEMR, SMI, SIN, SOUT, SINTA, SHALT
]	PROCESSOR:	PSYNC, pDBIN, p⿴id
[]	UTILITY:	MWRT
[]	POWER:	+8 VOLTS, +16 VOLTS, -16 VOLTS

4.3 GROUND TEST

The following procedure checks the individual LEDs and the driver IC for proper function. These checks are performed by grounding each individual SIGNAL line of the Sloo bus. BE CAUTIONED: DO not ground pins $1,2,51$, or 52 as these are IEEE Sloo power lines. The safety resistor will get hot very quicxly (toasty fingers).
[1 Prepare a testing cable about $18^{\prime \prime}$ long. One end should be soldered to an alligator clip. The other end should be soldered to a 15 ohm 3 watt resistor. The free lead of the resistor will function as the test probe tip. Cut probe tip lead to $1^{\prime \prime}$ for ease of use. Connect the alligator clip to the ground point located between RP2 and RP4 of the BUS PROBE.
$[$ [Using the ground wire, touch each of the following S-100 bus pins on the top connector of the extender card. Verify the corresponding BUS PROBE indication.

PIN	DISPLAY I	INDICATION	PIN	DISPLAY	INDICATION
3	XRDY	turns on	29	A5	turns off
4	VIO*	turns on	30	A4	turns off
5	VI1*	turns on	31	A3	turns off
6	VI2*	turns on	32	Al5	turns off
7	VI3*	turns on	33	Al 2	turns off
8	VI4*	turns on	34	A9	turns off
9	VI5*	turns on	35	DO1	turns off
10	VI6*	turns on	36	DOO	turns off
11	VI7*	turns on	37	Al 0	turns off
12	NMI*	turns on	38	DO4	turns off
13	PWRFAIL*	turns on	39	DOS	turns off
14	DMA3*	turns on	40	D06	turns off
15	A1 8	turns off	41	DI2	turns off
16	A16	turns off	42	DI3	turns off
17	A17	turns off	43	DI7	turns off
18	SDSB*	turns on	44	sMI	turns on
19	CDSB*	turns on	45	SOUT	turns on
20	0 Volt	NO EFFECT	46	SINP	turns on
21	RFO	NO EFFECT	47	SMEMR	turns on
22	ADSB*	turns on	48	salita	turns on
23	DODSB*	turns on	49	clock	NO EFFECT
24	PAI	NO EFFECT	50	- Volt	NO EFFECT
25	pSTVAL*	turns on			
26	PRIDA	turns off	53	0 Volt	NO EFPECT
27	RFO	NO EFFECT	54	SLV CLR*	turns on
28	RFU	NO EFFECT	55	TMAO*	turns on

PIN	DISPLAY INDICATION		PIN	DISPLAY	INDICATION
56	TMAI*	turns on	79	AO^{-}	turns off
57	TMA2*	turns on	80	A1	turns off
58	sXTRQ*	turns on	81	A2	turns off
59	A19	turns off	82	A6	turns off
60	SIXCLN*	turns on	83	A7	turns off
61	A20	turns off	84	A8	turns off
62	A21	turns off	85	A1. 3	turns off
63	A22	turns off	86	Al 4	turns off
64	A23	turns off	87	All	turns off
65	NDEF	NO EFFECT	88	DO2	turns off
66	NDEF	NO EFFECT	89	D03	turns off
67	PRANTOM*	turns on	90	D07	turns off
68	MWRN:	turns off	91	DI4	turns off
69	RFU	NO EFFECT	92	DI5	turns off
70	0 Volt	NO EFFECT	93	DI6	turns off
71	NDEF	NO EFPECT	94	DII	turns off
72	RDY	turns on	95	DIO	turns off
73	INT*	turns on	96	SINTA	turns off
74	HOLD*	turns on	97	SWO*	turns on
75	RESET*	turns on	98	ERROR*	turns on
76	PSYNC	turns off	99	POC*	turns on
77	PWR ${ }^{*}$	turns on	100	0 Volt	NO EFFECT
78	pDBIN	turns off			

[] Turn mainframe power off. Wait for power supply to discharge. Now remove the BUS PROBE and insert into the extender card.
[] Turn mainframe power on. Using the ground wire, touch each of the following BUS PROBE IC pins. Verify the corresponding BUS PROEE indication.

IC-PIN DISFLAY INDICATION

1R-3 PATCH 7 turns on
1K-11 PATCH 6 turns on
lL-3 PATCA 5 turns on
1L-11 PATCE 4 turns on
1M-3 pATCA 3 turns on
1M-11 pATCA 2 turns on
$1 \mathrm{~N}-3$ PATCA 1 turns on
1N-11 PATCE 0 turns on

4．4 CYCLE DISPLAY

The following procedure checks the $B U S$ PROBE ability to view selective bus cycles．The software is written in 8080 code so as to operatate with the 8080,8085 ，and the $280 \mathrm{microprocessors}$. Similar programs can be wriiten by those users who have other microprocessors．Use TSX／PGMI as an example．

The following programs require system memory from 0100日 to 0157月． This is a minimum，those systems having more memory are acceptable．TSX／PGMI can be modified to avoid any I／O which could affect the users I / O address space．Pick unused port numbers．
［ ］Turn your mainframe power switch off．Insert your system card set．Install the BUS PROBE into your mainframe．
［ ］Turn your mainframe power switch on．Enter program TSX／PGM1 into your computer and execute it．The following listing contains the needed 日EX CODE．

	；BUS PROBE CYCLES DISPLAY－TSX／PGMI＊			
	；＊＊＊			
	；PROGRAM EXECUTES DIFFERENT MACAINE CYCLES＊ ；TO ENABLE TESTING THE BUS PROBE＇S CYCLE＊ ；SELECTION CIRCUIT－OCT 27，1981－SK＊ 			
0100		ORG	0100H	；CP／M TPA AT 0100月
	；＊＊＊＊＊（ PROGRAM BEGINS ）＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊			
0100 2100AA		LXI	日，OAAOOH	； HL SET TO AAOOE．
0103 3E0F	REPEAT：	MVI	A，OFH	；LOW NIBBLE SET．
0105 D333		OUT	331	；OUT TO PORT 33H．
010777		MOV	M，A	；WRITE REG TO MEM．
0108 DB00		IN	OOH	；INPOT FROM OOA．
010A C30301		JMP	REPEAT	；ENDLESS LOOP．
010 D		END		

TEST MI CYCLE．
［ ］Set $S 1$ to the following settings：

S	is	$O F F$	P	is	$O F F$	A	is	$O N$	0	is
I	$O N$									
I	is	$O N$	W	is	$O N$	R	is	$O N$	1	is
$O F F$										

Verify：Address bits Al5 thru A8 are＇ 00000001 ＇or 01 hex． Status MI and MEMR are on．

TEST MEMORY READ CYCLE

```
[ ] Alter Sl settings: R to OFF l to ON
Verify: Address bits Als thru A8 are '00000001' or 01 hex. Status MEMR is on.
```

TEST MEMORY WRITE CYCLE.
[] Alter Sl settings: W to OFF R to ON
Verify: Address bits Al5 thru A8 are 'l0101010' or AA hex. Data bits DO7 thru DOO are '00001111' or OF hex. Status WO is on.

TEST PORT INPUT CYCLE.
[] Alter Sl settings: I to $O F F \quad W$ to $O N$
Verify: Address bits A7 thru AO are all off. Status IN is on.

TEST PORI OUTPOT CYCLE
[] Alter Sl settings: O to $O F F \quad I$ to $O N$
Verify: Address bits A7 thru AO are ' 00110011 ' or 33 hex. Data bits DO7 thru DOO are ' 00001111 or OF hex. Status OUT is on.

ThIS COMPLETES THE TESTING.

4.5 SCAN DISPLAYS

TSX/PGM2 and TSX/PGM3 are optional test programs. TSX/PGM2 scans the DATA OUT leds. TSX/PGM3 scans the ADDRESS leds. For either program the BuS PROBE should be set to view only the MEMORY WRITE bus cycle.

0130	21FEFF	P4SNXT:	LXI	H, OFFEEA	;SET ZERO BIT IN HL.
0133	CD3E01		CALL	BURST	
0136	7C		MOV	A, $\mathrm{H}^{\text {d }}$; GET E REG.
0137	B5		ORA	L	; AND IN L REG.
0138	29		DAD	日	; 日L SEIFT LEFT.
0139	C23301		JNZ	P4 \$NXT	; REPEAT NOT ZERO.
$013 C$	C3 0601		$J M P$	PI \$BGN	;REPEAT PROGRAM.
		;*****	PROBE	DISPLAY DRIVER) ***************	
013 F	110007	BURST:	LXI	D, TIMER	;LOAD TIMER VALUE
0142	71	REPEAT:	MOV	M, C	;WRITE MEMORY
0143	71		MOV	M, C	;WRITE MEMORY
0144	71		MOV	M, C	;WRITE MEMORY
0145	71		MOV	M, C	;WRITE MEMORY
0146	71		MOV	M, C	;WRITE MEMORY
0147	71		MOV	M, C	;WRITE MEMORY
0148	71		MOV	M, C	;WRITE MEMORY
0149	71		MOV	M, C	;WRITE MEMORY
014 A	1 B		DCX	D	- DEC LOOP CNTR
0148	7 A		MOV	A, D	;GET A REG.
014 C	B3		ORA	E	;OR IN E REG
014D	C24201		JNZ	REPEAT	; NOT 0, WRITE AGAIN.
0150	79		MOV	A, C	;GET C REG.
0151	$2 F$		CMA		; COMPLEMENT.
0152	4F		MOV	C. A	;RETURN C REG.
0153	C9		RET		; RETURN TO CALLER.
		; **			
0154	00000000		DW	0,0	; STACK AREA.
0158	$=$	STR \$T?	EQU	\$;TOP OF STACR.
0158			END		; END PROGRAM.

PIN	FUNCTION	PIN	FUNCTION
1	+8 volts	51	+8 Volts
2	+16 Volts	52	-16 Volts
3	XRDY	53	GND
4	VIO*	54	SLAVE CLR*
5	VII*	55	TMAO*
6	VI2*	56	TMA1*
7	VI3*	57	TMA2*
8	VI4*	58	SXTRQ*
9	VI5*	59	Al9
10	VI6*	60	SIXTN*
11.	VI7*	61	A20
12	NMI*	62	A21
13	FWRFAIL*	63	A22
14	DMA3 *	64	A23
15	Al 8	65	NDEF
16	Al 6	66	NDEF
17	Al7	67	PRANTOM*
18	SDSB*	68	MWRT
19	CDSB*	69	RFU
20	0 Volts	70	0 Volts
21.	RFO	71	NDEF
22	ADSB*	72	RDY
23	DODSB*	73	INT*
24.	P日I	74	HOLD*
25	pSIVAL*	75	RESET*
26	pHLDA	76	PSYNC
27	RFU	77	DWR*
28	RFU	78	pDBIN
29	A5	79	AO
30	A4	80	A1
31	A3	81	A2
32	A15	82	A6
33	Al 2	83	A7
34	A9	84	A8
35	DO1	85	Al3
36	DOO	86	Al 4
37	Al 0	87	All
38	DO4	88	DO2
39	D05	89	D03
40	D06	90	D07
41	DI2	91	DI4
42	DI3	92	DI5
43	DI7	93	DI6
44	SM1	94	DII
45	SOUT	95	DIO
46	SINP	96	SINTA
47	SMEMR	97	SWO*
48	salta	98	ERROR*
49	CLOCR	99	POC*
50	0 Volts	100	0 Volts

ITEM	QTY	JADE PART NO.	DESCRIPTION
1	1	TSX-200B	PC BOARD, BUS PROBE
2	1	TSX-200M	MANUAL, BUS PROBE
3	2	CAS-330P5 00	Capacitor, 33 pf. mica
4	1	CAL-104P500	Capacitor, 0.1 uf. monolithic
5	3	CAT-475 P100	Capacitor, 4.7 uf 10 v tant. (4.7 thiru $100 \mathrm{~F},>$ or $=10 \mathrm{~V}$)
6	1	CAT-685P200	Capacitor, 6.8 uf $25 v$ tant. (4.7 thru 100F, $>$ or $=25 \mathrm{~V}$)
7	1	CAT-334P100	Capacitor, 0.33 uf 10 v tant.
8	1	CAT-335P100	Capacitor, 3.3 uf 10 v tant.
9	1	CNM-111362	1 136 Header Strip
10	4	CNM-121092	2X10 Eeader Strip
11	10	CNF'-12020	Shunt plug
12	2	HDA-34304	Massive TO-220 heat sink
13	3	ICL-LM340T5	+5V TO-220 voltage reg.
14	4	NO P/N	* 4 screw, nut, and washer
15	12	ICT-74LSO4	Eex inverter
16	3	ICT-74LS20	Dual 4 input nand gate
17	1	ICT-74LS30	8 input nand gate
18	24	ICT-74L538	Quad 2 input nand buffer
19	3	ICT-74LSI 23	Dual one-shot
20	8	RCD-1413150.0	Resistor Pack, 150 Ohms 14 pin / 13 resistors.
21	1	RCS-08073.30K	Resistor Pack, 3.3K 8 pin / 7 resistor SIP.
22	1	RCQ-33. OR	Resistor, $1 / 4 \mathrm{~W} 33.0 \mathrm{~K}$
23	2	RCQ-6.80R	Resistor, 1/4 W 6.8k
24	2	RCQ-5.10R	Resistor, 1/4 W 5.lk
25	2	RCE-910.0	Resistor, 1/2 W 910 Ohms
26	2	RCT-10440	Resistor, look cermet trimmer
27	100	SEO-5053S	Red light emitting diode.
28	1	SED-1N914B	Silicon signal diode.
29	3	SKL-1601	IC Socket, 16 pin
30	48	SKI-1401	IC Socket, 14 pin
31	1	SWD-108	8 SPST DIP switch
32	1	RCR-15.00	Resistor, 3 W 15 Ohm
33	1	NO P/N	24 n length hookup wire
34	1	HDX-00100	Alligator clip, small

APPENDIX C

Component Side - Front View

In the following prints the silkscreen is shown as solid dark while the foil patterns are shown in halftone. Both sides of the BUS PROBE are presented as both true and reverse images. Hopefully this presentation will allow the user greater ease in tracing foils from one side of the board to the other.

Solder Side - Front View

Component side - Back View

This sheet presents some corrections to the first release of the BUS PROBE manual. Please make those corrections to your manual as indicated. Also, some additional information is presented we would like to call your attention to.

- PAGE 12 -

Five pin test indications are in error as declared in the GROOND TEST procedure. The proper test indication for Sloo pins 44, 45, 46,47 , and 48 should all be "turns off".

PIN	DISSLAA	INDICATION
-94	SMI	turns off
45	SOUT	turns off
46	SINP	turns off
47	SMEMR	turns off
48	sHLTA	turns off

Pin 14 should be labeled as TMA3*. The previously defined DMA signal names has been changed to TMA names (temporary master access).

- SIGNAL NAMES -

All signal names under the STATUS GROUP have the leading "s" removed to allow larger lettering to be used on the silkscreen. This should cause no difficulty as the "s" stands for "status". EXAMPLE: STATUS - MEMR represents the signal sMEMR. This same procedure was followed for all signals under the PROCESSOR heading. PROCESSOR represents the prefix "p".

The STAR designation (*) for negitive signal polarity has been dropped from the silkscreen to allow larger lettering to be used. All STAR'ed signals are displayed so that the LED is on during the asserted signal condition.

The silkscreen TMA disable signal names are easy to understand once explained.

IEEE NAME	SILRSCREEN	IEEE SIGNAL FUNCTION
SDSB* 18	DISABLE - STAT	DISABLES STATUS LINES
CDSB* 19	DISABLE - CNTL	DISABLESCONTROL LINES
ADSB* 22	DISABLE - ADDR	DISABLES ADDRESS LINES
DODSB* 23	DISABLE - DODT	DISABLES DATA OUT LINES

S100 signal saLTA appears in the STATUS CLOSTER as EALT.

- CPUs -

Some CPU boards do not generate the sWO* signal (S.D. Sales SBC200 as an example). This inhibits the cycle selection circuit from responding to MEMORY. WRITE and PORT OUTPUT cycles. The following modification can be performed which will eliminate the need for the BUS PROBE to monitor sWO*.

1. Lift pin \#l of IC 3 P.
2. Lift pin 31 of IC 1 P.

An easy way to lift a pin is to unplug the $I C$, ther bend the IC pin up, then insert the IC back into the socket. The selected IC pin is no longer in circuit.

- GROUND PINS -

This item is important enough to repeat. On the BUS PROBE S100 pins $\$ 20,70$, and 53 are connected to ground. On some pre-IEEE systems these grounded lines will cause those systems to not function. These connections can be broken. PLEASE follow OPTIONAL STEP $\# 2$ in the BUS PROBE manual (SECTION 3 - PAGE 10).

- SCEEMATIC -

FOr each LED in the BOS PROBE schematic there is a corresponding part designation. This consists of "CR" and a number/letter combination. The numbers correspond to the EXTENDED ADDRESS BUS numbering 23 thru 0 . The letters A, B, C, and D correspond to the row. Row A is on top, the EXTENDED ADDRESS BDS row. Row D is on the bottom, the row whichincludes the POWER LEDs and the PATCH LEDs. An LED labeled CRI2C would be under the Al2 LED in $50 W C$, the UTIIITY signal HOLD.

- 64R ADDRESS SPACE -

The EXTENDED ADDRESS LINES A23 thru Al6 serve little use on those systems which only use 16 address lines. To turn A23 thru Al6 off cut the foil link "XA" on jumper block Xl .

- X -

The BUS PROBE panel includes an LED labeled "X". This LED indicates when the cycle selection circuit is inhibiting the display.

JADE would welcome your comments about this board. We are very much interseted in you, our customer, and we want to provide ourselves with some feedback about how you like the product and documentation. Please take a moment to fill out the questionaire and return it to us at the address below.

JADE COMPUTER PRODUCTS ENGINEERING DEPARTMENT 4901 WEST ROSECRANS HAWTHORNE, CA 90250

1. Was your BUS PROBE damaged in shipment? YES
2. Were any parts missing? YES NoIf yes, what were they?
\qquad
3. Was the quality of the material andworkmanship good? YESNo
4. Did you have any trouble understanding the manual? YES NO
If so, in what area(s)?
\qquad
\qquad
5. Have you encountered problems with the BUS PROBE? YES No
If yes, what?
\qquad
\qquad
6. Did you solve the problem? YES No
If so, how?
\qquad
\qquad
\qquad
7. Are you satisfied with your BuS PROBE? YES NO
Why?
\qquad
\qquad

If yes, what?

9. Other comments?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad L
\qquad

10. NAME:

ADDRESS:
CITY, STATE: \qquad
ZIP CODE:

PIONE: \qquad

D

(1)

